B. Array Cloning Technique

    远端评测题 1000ms 256MiB

Array Cloning Technique

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

Description

You are given an array $a$ of $n$ integers. Initially there is only one copy of the given array.

You can do operations of two types:

  1. Choose any array and clone it. After that there is one more copy of the chosen array.
  2. Swap two elements from any two copies (maybe in the same copy) on any positions.

You need to find the minimal number of operations needed to obtain a copy where all elements are equal.

The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \le t \le 10^4$) — the number of test cases. Description of the test cases follows.

The first line of each test case contains a single integer $n$ ($1 \le n \le 10^5$) — the length of the array $a$.

The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-10^9 \le a_i \le 10^9$) — the elements of the array $a$.

It is guaranteed that the sum of $n$ over all test cases does not exceed $10^5$.

For each test case output a single integer — the minimal number of operations needed to create at least one copy where all elements are equal.

Input

The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \le t \le 10^4$) — the number of test cases. Description of the test cases follows.

The first line of each test case contains a single integer $n$ ($1 \le n \le 10^5$) — the length of the array $a$.

The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-10^9 \le a_i \le 10^9$) — the elements of the array $a$.

It is guaranteed that the sum of $n$ over all test cases does not exceed $10^5$.

Output

For each test case output a single integer — the minimal number of operations needed to create at least one copy where all elements are equal.

6
1
1789
6
0 1 3 3 7 0
2
-1000000000 1000000000
4
4 3 2 1
5
2 5 7 6 3
7
1 1 1 1 1 1 1
0
6
2
5
7
0

Note

In the first test case all elements in the array are already equal, that's why the answer is $0$.

In the second test case it is possible to create a copy of the given array. After that there will be two identical arrays:

$[ \ 0 \ 1 \ 3 \ 3 \ 7 \ 0 \ ]$ and $[ \ 0 \ 1 \ 3 \ 3 \ 7 \ 0 \ ]$

After that we can swap elements in a way so all zeroes are in one array:

$[ \ 0 \ \underline{0} \ \underline{0} \ 3 \ 7 \ 0 \ ]$ and $[ \ \underline{1} \ 1 \ 3 \ 3 \ 7 \ \underline{3} \ ]$

Now let's create a copy of the first array:

$[ \ 0 \ 0 \ 0 \ 3 \ 7 \ 0 \ ]$, $[ \ 0 \ 0 \ 0 \ 3 \ 7 \ 0 \ ]$ and $[ \ 1 \ 1 \ 3 \ 3 \ 7 \ 3 \ ]$

Let's swap elements in the first two copies:

$[ \ 0 \ 0 \ 0 \ \underline{0} \ \underline{0} \ 0 \ ]$, $[ \ \underline{3} \ \underline{7} \ 0 \ 3 \ 7 \ 0 \ ]$ and $[ \ 1 \ 1 \ 3 \ 3 \ 7 \ 3 \ ]$.

Finally, we made a copy where all elements are equal and made $6$ operations.

It can be proven that no fewer operations are enough.

2024暑期集训第一周小测

未参加
状态
已结束
规则
ACM/ICPC
题目
6
开始于
2024-7-3 19:00
结束于
2024-7-3 21:00
持续时间
2 小时
主持人
参赛人数
47